1

0 2

. . aT 92T
F[la 1] :F[l70} + E ’i,th +m

The value of the second derivative is found directly from the equation for I' extended to the boundary., A 40X
40 grid uniform over z and nonuniform over r was used for the solution in the central region, The r-variation
of the computing step was specified in the following way:

Pl = (0] SED = o By 4] = (14 @) B L.

For the computations discussed above a=0.024,

The author expresses gratitude. to M, A, Gol'dshtik for attention to the work,

LITERATURE CITED

1, H,Greenspan, The Theory of Rotating Liquids, Cambridge University Press (1968).

' M. A. Gol'dshtik, "An approximate solution of the problem of laminar twist flow in a ecircular tube,”
Inzh,~Fiz. Zh., 1, No. 3 (1959).

3. N. F. Budunov, "Investigation of discontinuous and twist flows of an impressible fluid in channels
of variable cross section," Author's Abstract of Candidate's Dissertation, Institute of Hydrodynamics,
Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (1973).

4, M. A. Gol'dshtik, G. P. Zykin, Yu. I. Petukhov, and V. N, Sorokin, "Determination of the radius of anair
vortex inacentrifugal sprayer,"Zh, Prikl, Mekh, Tekh. Fiz., No. 4 (1969),

5, G.K.Batchelor, Introductionto Fluid Dynamics [Russiantranslation], Mir, Moscow (1973).

6. M. A, Gol'dshtik, " A contribution to the theory ofthe Rank effect (twist flow of gas in a vortex chamber),
Izv. Akad Nauk SSSR, Mekh. Mashinostr., No. 1 (1963). :

7. Z. V. Boldyreva and T. V. Kuskova, "On the problem of fluid vlow viscous incompressible past a sphere,"
in: Numerical Methods in Continuum Mechanics [in Russian], No. 15, VT's, MGU, Moscow (1970).

SECONDARY FLOWS BESIDE A CYLINDER
INA COMPLEX SOUND FIELD

V. B. Repin ) UDC 534.,222,2

It is known that steady flows arise beside a solid surface in the presence of a sound field which
can to a certain extent exert an effect on the processes of heat and mass exchange [1-3]. As a
rule, all papers from this area refer to the case in which one can represent the sound fieldin
the form of a single wave. However, situations are often encountered in practice in which the
sound field is complex; i.e., it consists of several vibrations whose amplitudes and frequencies
are unlike in the general case. The secondary flows which form beside a circular cylinder
placed in a complex soundfield are investigated in this paper.

Let n plane waves with the following parameters encounter a circular cylinder of radius R: A, is the
velocity amplitude of the acoustic shift in the n-th wave, wy, is the frequency, ay is the point of encounter of
the wave with the cylinder, and ¢y, is the phase of the wave. Let us consider the case in which the radius of
the cylinder is significantly less than the wavelength; then the flow beside the cylinder can be treated as in-
compressible, '

The Navier—Stokes equation describing the motion of a viscous incompressible liquid has the form

a 3, vRp) 1
=5 (V) —e T%%@— =z Hiy*p, @

Kazan!. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 56~64, No-
vember-December, 1977, Original article submitted November 15, 1976,
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o
where . V* —1/,; + i+r a,. 5+ (H—r)’ 55 a(\P, V3)/0(9, r) is the Jacobian determinant; €=s;/R; H=6,, /R;

84¢ = (2v/w )/ and 8, is the amplitude of the acoustic shift in the first wave. The stream function P is de~
fined as

u = oPlar, v = —1/(4 + r)-09/a0. (2)

The boundary conditions are of the form

Y =dp/or =10 at - r = 0;
(3
= (1 + r) z Bh Sl]l (e__a ) i(bht+Wh) Cas r_+ oo,

where Bk Ay/Ay and by = (wk/w1)1/2

Equations (1)-(3) are written in the following dimensionless variables:

r= (F_ R)/Rv 'lP =E/A13, i =?(01. (4)

Let us consider the case in which the following conditions are fulfilled:
| e< d; (5)
H< L (6)

We will solve the problem by using the method of spliced asymptotic expansions [4, 5]. Let us divide

“the entire region occupied by the liquid into two regions: an interior one (with a characteristic size 050 In

the direction perpendicular to the cylinder surface) and an exterior one (with a characteristic size R). The
exterior variables are defined by Eq. (4), and the interior ones are written in the form

N = — R)b,, m =P/AS,, t = to. @
The relation between the interior and exterior variables has the form
' r = Hy, ¢ = Hm, : (8)

where 1 and r are measured from the cylinder surface and 8 is measured from the encounter point of the first
wave (A;).

Let us consider the exterior region. In view of condition (5) the solutlon will be sought by the method of
successive approximations:

_ P =90 + ey + Oe?). ©)
Having substituted @) into (1) and collected terms with identical powers of &, we obtain
) 1 9 0) a(0))
35 (VA0) = '?szV‘fP“’), 5;(V2.\l’“’)-———a (v a(,e,v;)l? ) %szﬁl’“’- (10)

Although Egs. (10) are linear, their solutions, written with the use of Hankel functions, are, however,
rather awkward, which hinders subsequent analysis. Therefore, we represent #({) in the form

PO = 0 | HypGh + O(H?), i =0, ..., (11)

by use of the condition (6). Having substituted (11) into (10) and collected terms with identical powers of H,

we obtain . s P
57 (VD) =0, S (v409) =0, ...,

9 (10) 2y, g2¢t?))
‘gf(vqu{ )_‘{ ; }H—_O’

a0, n (12)
i (41 F(pO, y2pl0) g (ploh, g2p00))
Y (V") _{ N R T (7 }H =0,
2 (pl00), G202} 5 (HOD prp0D) 5 (p10D), p2pOO) 1 . (10
{ 3(0, ) + 38, 1) + a0, r) }t_ZV‘Pst )

Using the second boundary condition (3), one can show that the function ¢(oj) does not contain a component which
is time-independent; therefore, Eqs. (12) will take the form

v =0, j=0,1,2.

(13)
[ (1 ) 10 _
5 (V") =05 viuy

where 310 =309(, ) +3{D 0, r, 1).
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For simplicity we will consider the sound field subsequently to consist of two plane waves. Then the
solutions of Eqs, (13) should. satisfy the following boundary conditions: :
PO — {(’1 +r)[sin Qe“ -+ Bsin (8 — a) ei®*H0)], j =0, (14)
bounded. j==0,
¢(1°)=bounded as r— =, and the exterior solution should be asymptotically spliced with the interior solution
as r—0; i.e.,
P(0) 2 Hm(oo). (15)

Let us consider the interior region. To this end let us rewrite Eq. (1) in the interior variables (7)

a(mm, 0, H), vim(n, 8, t, H)), ¢
%(Vzm’ (TI’ e’ t1 H)) —& ( 3 (e, ) ) = '2‘V4m (’fl, e, t, H)' (16)

Similarly to the exterior solution, we will seek the solution in the interior region in the form of a series:
m =m0 + 0 (H) + s [m{{? + m{® + 0 (H)] + 0 (e2). ' (amn

It has been shown in [5] that an expansion of the type (11) and (17) can be applied only in the case inwhich
the Reynolds number calculated from the velocity of the steady secondary flow is small (Rest=A2/wv «1). The
case of Regt> 1 will be discussed separately.

Having substituted (17) and performed the same operations as in the derivation of Eqs, (13), we obtain

(00 1 (00 N
My —jmmm) =10; (18a)
a0y {00y {00) (00, (00)
M. mmm = 2{my Mg — Mg Mgy (18b)

The functions mlj should satisfy the boundary conditions
mii = am(ii)/an = ag 7 = 0,i,j=0, 1., 19
and be asymptotically spliced to the exterior solution, ‘

The solutions of the first equation of (13) and of Eq. (18a) which satisfy the conditions (14), (15), and (19) are of
the form

PO = [1 +r— T_:j—r Real [sin 6 - e? 4 Bsin (8 — a) - ei®*t+0)], (20)
m) — 2 Real [sin8 - £, (n) ei* -+ Bb—"sin (8 — a) - £, (by) eXt*+o)] (21)

for the exterior and interior regions, respectively, where

Ea(m) = 1+ L et — 1],

Prior to starting the search for a steady component of the stream function, we note that the right~hand
side in Eq. (18b) will have a different analytic form depending on the relation between the frequencies of the
vibrations of the two waves,

Let us consider the case of unlike frequencies (b #1). Using (21) and having calculated the average terms,
Eq. (18b) is written in the form

Mt = 281020 - f (n) + 2B*bsin2 (8 —a) - f, (b), (22)
where
fin) = e+ - o-(-i)in L jpe—(1riin — jpe=(1~i)n — Ze~n, (23)

The solutions of the third equation of (13) and of Eq. (22) which satisfythe cbnditions (14); (15),and (19) are of the form

mi? = @, (1) sin 26 -+ B2b—3D, (by) sin 2 (8 — a); (24)
PO =2 [t — 1] sin 20 + Bo—2sin2 (6 —a)] (25)

for the interior and exterior regions, respectively, where
P, () = _15’. — % 7 — ﬁzﬁi e— iy _ .3_%21 o—{t—im _t_- .;. no—{1—im — EL ne—(iHm _ .i_ - (26)

It follows from Egs. (24) and (25) that in the case of unlike frequencies the steady flow is a superposition
of secondary flows corresponding to each vibration separately.
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‘Fig. 1

The streamlines of the steady flow in the interior region are shown in Fig, 1 for a variation of the rela~
tive amplitude B from 0.05 to 10.0 w;=4w,, a=%/4). Tt is evident that the steady flow for small values of B
(Fig. 1a, B=0,05) is determined by the first vibration and resembles in its nature the flow deseribed by Schlicht-
ing [6]. As the amplitude of the second vibration increases, the nature of the flow is significantly altered. One
can note those situations in which closed streamlines are absent in the interior region (Fig. 1b and c where
B=0.4 and 0.8). Upon a further increase in B the nature of the steady flow is determined by the parameters
of the second vibration (Fig. 1d, B=10.0).

Thus, the structure of the steady secondary flow in the case under discussion is more complex than in
the Schlichting problem. However, one can predict the nature of the flow without resorting to the aid of a com-
puter but investigating only the position of the branch lines. By branch line is understood a streamline at
whose intersection the tangential component of the velocity field of the steady flow changes sign.

Thus, near the surface one can, by éxpanding (24) into a Taylor series and restricting oneself to a quad-
ratic term, derive the following expression for determination of the angular coordinate of the branch line of
the interior flow (the interior branch line):

1

i .
B=—2—arctg[ B2p™ ' sin 2a ] nn n=01..., 27)

1+ B2 1cos2a 2

Similarly, we obtain a relation from (25) for determination of the angular coordinate of the branch line of the
exterior flow {the exterior branch line) ‘

1 . B2p%sin 24 nn .
9—'2—arctg [m]—}—-r, n:O,i-... (28)

It is evident from a comparison of (27) and (28) that the exterior and interior branch lines do not coincide with
each other, while they do coincide in the Schlichting problem. Coincidence of the exterior and interior branch
lines will be observed in our case either when B=0 or =, which corresponds to a simple sound field, or when
a=%n/2. Consequently, the structure of the flow with these parameters will be the same as in [6]. We note
that the pattern of the steady flow is repeated after x/2,

Let us consider the case of identical frequencies (b=1). Then Eq. (18b) is written in the form

M %mm = 2L (8) f1 (n) + 4B sina - sin @ - f,(m), (29)

where L o -
L(0) = sin 20 4- B%sin 2(0 — a) + 2B sin (26 — a)-cos @; (30)
foln) = 26~ — e—(M+idn e—(l;‘)’] + e~ Wl+im - ne—(l—i)ﬂ,f and fi(n) is defined by Eq. (23).
. The solutions 'of thethird equation of (13) and of Eq. (29) which satisfy the conditions (14), (15), an_d (19) are of the

form
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m{i® — L (6) @, (n) + Bsina - sin g - @, (x); (31)

(oy _ 3 1 _41. L) — . sina - si 3
vy = Z[m 1] L(®)—3BIn(1-+r) . sina - sing, (32)
where &, () =3/2—3n —(1~2i)e” (+)n —(1+2i)e” (=i —ne” (+m —-nNe” (-im —:-1/2-65"2’7 , and & /) and L(6) are de-
fined by Eqgs. (26) and (30), respectively.

Thus, superposition of steady flows is not observed in the case of identical frequencies, since a contribu-
tion produced by the nonlinear interaction of two vibrations in the interior region appears in Egs. (31) and (32).

The streamlines of the steady flow in the interior (left) and exterior (right) regions are shown in Fig, 2
for a variation of the difference in the phases ¢ between the two vibrations (w;=w,, a=7/2, A{=A,). Ttis
evident that when the vibrations occur in phase, ¢ =0 (Fig. 2a), then the.nature of the flow both in the exterior
and the interior regions completely coincides with the Schlichting flow [6]. Subsequently, the pattern is quali-
tatively altered (as ¢ increases): Inthe interior region neighboring vortices recede from the surface of the
cylinder and decrease in size right down to complete disappearance (Fig. 2b, ¢ =7/6); the upper vortex also
decreases in size, but it is pressed to the surface of the cylinder. Two closed vortices appear in the exterior
region whose size decreases as ¢ increases; at the same time a large~secale circulating flow develops in the
exterior and interior regions. We note that when ¢ =90°(Fig. 2¢) the pattern obtained agrees in nature with
the flow described by Longuet and Higgins [7], who treated this particular case to describe anomalous oceanic
currents which form around isolated islands. It has been shown in {8] that the nature of the Longuet—Higgins
flow does not depend on the number Regt 2nd is a peculiar analog of a Poiseuille flow,

Let us determine the position of the branch lines. Having repeated similar calculations as in the deriva-
tion of Egs. (27) and (28), we obtain

= L aresi £ X 33
6_2arg51n(i = cosy)—(—z + an, (33)

where the plus sign refers to the interior branch line and the minus sign refers to the exterior one, and where

E=Bsing- sina; C=—,1,—+Bcosq>-cosa+%-3%052a;

v::arctg% +nn; D=DBcosg- sina—{——é—Bsin2a.

1t follows from Eq. (33) that the flow pattern repeats in x. In addition both the interior and exterior branch

lines alternate not in #/2, as is observed for the case of unlike frequencies, but their spatial separation de-
pends on the parameters which characterize the complex sound field, We note that such situations may be
realized when the exterior and interior branch lines coincide: B=0 or «, which corresponds fo a simple sound
field; a =#n, i.e., the propagation lines of the two waves coincide; and ¢ =%n, i.e,, the vibrations occur either

in phase or out of phase. Consequently, the nature of the flow in these cases agrees completely with the Schlicht-
ing flow [6]. One should also note that if | E/C cos y| > 1, then no branch lines at all exist and the steady flow

is a large-scale circulation (a flow of this type is shown in Fig. 2¢). However, if B=1, a =%, ¢ =0, then there

is no steady flow. This is physically confirmed, since the case in question corresponds to the placement of

the cylinder at a velocity node of a standing wave.

Since a large~scale circulating flow appears near the cylinder in the case of identical frequencies, a
steady moment of forces acts on the cylinder which is determined in the form

M = 4npR(L/A, ) (A14,/0) sin a- sin @.

One can convince oneself that the time-independent moment of the forees is equal to zero in the case in which
a complex sound field reduces to a simple one, i.e., to the Schlichting problem [6]. As calculations have shown,
no steady force at all acts on the cylinder in the case w{# w,. '

The results presented above are described in Eulerian variables. However, the experimental investiga~
tion of secondary flows are conducted, as a rule, with the use of labeled particles {the tracking method), whose
behavior is described in Lagrangian variables, If the Eulerian and Lagrangian descriptions give identical re~-
sults for a steady flow, then they differ in the case of nonsteady motion; i.e., the streamlines (Eulerian vari-
ables) do not coincide with the particle trajectories (Lagrangian variables). It has been shown in [9] that the
trajectory of a particle is related to the streamline of the secondary flow by the equation

L
Pk = yE k + FE,
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where

uy is the pulsation velocity in Eulerian variables and k is the unit vector in the z direction.
By using Eqgs. (20) and (21), we obtain in the case of unlike frequencies
:F=0(H); P — % sin 26 - @, (y)— -g— B?%—3sin 2 (6—a)- @, (bn)+0 (H) (34)

in the exterior and interior regions, respectively, where
(D) = 4 + e — gt (1 . fne—(1HiIN | jye—(1-)n, (35)
It follows from the first equation of (34) that the streamlines and particle trajectories coincide with an accuracy of
to terms of the order O(H), which is in agreement with the case of a simple sound field [9].
In the case of identical frequencies we obtain

1
F:———z—B{i——

Fe—1L(0)®,(m)—LBsing-sina. 0, -+0H)

HT:_’F} sin ¢ - sina 4 O (H),

for the exterior and interior regions, respectively, where ®,) and L(6) are defined by Eqgs. (35) and (30) and
: @yn) = 2 — 4n + 2o~ — Pe(1+i)M— 2o~ (1-1)n-L-2ye—(1+i)0 — 2ne—(-iin,

Thus, the streamlines and particle trajectories do not now coincide in the exterior region in the case of
identical frequencies. However, as supplementary calculations on a computer have shown, the nature of the
flow in Lagrangian variables does not differ significantly from the Eulerian description either in the case of
identical or unlike frequencies.

The results presented above are obtained on the assumption that the Reynolds number calculated from
the velocity of the secondary flows is small, When Reg;>1, the equation which describes a steady flow in the
exterior region is of the form [5]
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O (Vs> VPsr) 1 4 :
FE = Teg Vbt (36)

A steady flow in the interior region is described as before by Eq. (18b). It is evident that although a super-
position of the secondary flows characteristic of each vibration is accomplished in the interior region in the
case of unlike frequencies, no superposition takes place, however, in the exterior region when Reg = 1 due to
the nonlinearity of Eq. (36).

We note in conclusion that the superposition of secondary flows both of the interior and exterior regions
is not performed in the higher-order terms [for example, 0(3)], independently of the size of Regt and the rela-
tion between the frequencies. '

The author expresses his gratitude to V. A. Murga and L. L. Tyurlik for the computer calculations,
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